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Abstract. In river-dominated deltas, bifurcations often develop an asymmetrical morphology, i.e. one of the downstream 5 

channels silts up while the other becomes the dominant one. In tide-influenced systems, bifurcations are thought to be less 

asymmetric and both downstream channels of the bifurcation remain open. The main aim of this study is to understand how 

tides influence the morphological development of bifurcations. By using a 2DH morphodynamic model (Delft3D), we 

simulated the morphological development of tide-influenced bifurcations on millennial time scales. The schematized 

bifurcation consists of an upstream channel forced by river discharge and two downstream channels forced by tides. Two 10 

different cases were examined. In the first case, the downstream channels started with unequal depth or length but had equal 

tidal forcing, while in the second case the morphology was initially symmetric but the downstream channels were forced with 

unequal tides. Furthermore, we studied the sensitivity of results to the relative role of river flow and tides. We find that with 

increasing influence of tides over river, the morphology of the downstream channels becomes less asymmetric. Increasing tidal 

influence can be achieved by either reduced river flow with respect to the tidal flow, or by asymmetrical tidal forcing of the 15 

downstream channels. The main reason for this behaviour is that tidal flows tend to be less unequal than river flows when 

geometry is asymmetric. For increasing tidal influence, this causes less asymmetric sediment mobility and therefore transport 

in both downstream channels. Furthermore, our results show that bedload tends to divide less asymmetrical compared to 

suspended load, showing a possible stabilizing effect of lateral bed slopes on morphological evolution. In our simulations, the 

more tide-dominated systems tend to have a larger ratio of bedload and suspended load transport.  Our results explain why 20 

distributary channel networks deltas with strong tidal influence are more stable than river-dominated ones.  

1 Introduction 

Deltas often consist of distributary channel networks. In these systems, water and sediment are divided at the bifurcations and 

distributed over the delta. The shape of the delta and the number of active channels depends on many factors like the forcing 

by rivers, tides and waves (Galloway, 1975; Rossi et al., 2016; Shaw and Mohrig, 2014), sediment availability and sediment 25 

type (Geleynse et al., 2011). Bifurcations tend to develop differently in river- than in tide-dominated systems, because tides 

influence the mouth bar formation processes of active river-dominated deltas (Edmonds and Slingerland, 2007; Leonardi et 

al., 2013; Shaw and Mohrig, 2014). In tidal deltas tides propagate upstream and can induce bi-directional flows. This unique 

characteristic may lead to a different morphological evolution of the bifurcations than would occur in the river-dominated zone 
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(Frings and Kleinhans, 2008; Hoitink et al., 2017), but this has not been proven yet and the underlying mechanisms have not 30 

been studied. The focus of this paper is on the stability and depth asymmetry of bifurcations in tidally influenced deltas. We 

do not focus on the morphological evolution of the entire delta or the formation process of mouth bars, but consider a single 

bifurcation consisting of one upstream and two downstream channels. These are the building blocks of deltas and the hydro- 

and morphodynamics of such a system has been studied before by many others ( Wang et al. 1995; Bolla Pittaluga et al., 2003; 

Buschman et al., 2010; Kleinhans et al., 2008; Buschman et al., 2010; Sassi et al., 2011; Buschman et al., 2013).  35 

 

In river-dominated systems, the morphology of the downstream channels of bifurcations often develops asymmetrically, such 

that one downstream channel deepens while the other silts up ( Kleinhans et al., 2008). In many cases this condition develops 

into an avulsion. This asymmetric development can be triggered by a small perturbation such as a different bed elevation at 

the junction (Bolla Pittaluga et al., 2003), by a meandering upstream channel nearby the bifurcation or by the geometry of the 40 

downstream channels such as different length of the downstream branches (Kleinhans et al., 2008). The study about this 

morphological evolution in river-dominated bifurcations was pioneered by Wang et al. (1995). They applied an analytical 

model to predict the stability of river bifurcations. They found that bifurcations can be stable if any tendency for downstream 

branch to become more dominant is counteracted by a relatively large share of the sediment input. Bolla Pittaluga et al. (2003) 

improved the model of Wang et al. (1995) by taking into account the cross-channel flow that can be induced by an asymmetric 45 

cross-sectional profile at the bifurcation. This effect induces a lateral bedload transport, which affects the asymmetric sediment 

division to the downstream branches. Using this approach, they found that the asymmetry of depth of the two downstream 

branches depends on the Shields number and on the width-to-depth ratio of the upstream channel at the bifurcation. 

Bifurcations with high width-to-depth ratio and that are dominated by suspended load transport will be instable and develop 

asymmetrical depths. Bertoldi and Tubino (2007) confirmed the results of Bolla Pittaluga et al. (2003) using a physical-scale 50 

model. Kleinhans et al. (2008) proposed that this asymmetrical depth development is also influenced by meandering of the 

upstream channel. The meandering bend induces an asymmetrical cross-sectional bed profile as tested by Bolla Pittaluga et al. 

(2003), and thereby influences the division of sediment at the junction. Bolla Pittaluga et al. (2015) continued the work of 

Bolla Pittaluga et al. (2003) for a wider range of sediment mobility conditions. They found a range of sediment mobility 

numbers that result in stable symmetric bifurcations. Meanwhile, bifurcations with sediment mobility higher or lower than this 55 

range will grow asymmetrically and avulse. 

 

In contrast to our knowledge of morphological development of bifurcations in river-dominated systems, our knowledge of this 

particular area in tide-influenced systems is still limited. Observations suggest that a similar development as in river-dominated 

systems can occur, as for example found in the most upstream bifurcation of the Yangtze Estuary that divides the main channel 60 

into North Branch and South Branch. According to Chen et al. (1982), the North Branch has evolved to be narrower and 

shallower while the South Branch has deepened. However, bifurcations in other tide-influenced deltas have downstream 

channels that seem to have a less asymmetric depth distribution, for example the Berau River Delta (Buschman et al., 2013) 
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and Kapuas River Delta (Kästner et al., 2017). It has been suggested that tidal deltas have more stable distributary channel 

networks than their river-dominated counterparts (Hoitink et al., 2017), but the underlying mechanisms are unknown. 65 

Furthermore, several studies have investigated tidal characteristics at tidal bifurcations. Despite a general understanding on 

tides and subtidal water division at tidally influenced bifurcations (Buschman et al., 2010; Sassi et al., 2011; Zhang et al, 2012; 

Buschman et al., 2013; Alebregtse and de Swart, 2016), the effect of tides on the morphological evolution of tidal bifurcations 

has not been fully understood yet. From previous studies it is clear that tides influence the subtidal flow (Buschman et al., 

2010; Sassi et al., 2011) and sediment division (Buschman et al., 2013), induce tidal currents that influence the sediment 70 

mobility, and can cause cross-channel currents at the junction (Buschman et al., 2013; Kleinhans et al., 2013). In river systems, 

all these factors are important for the morphological development of the downstream channels and it is expected that this is 

also the case for tide-influenced systems.  

 

Therefore, the main aim of this paper is to study the effect of tides on the morphological evolution of bifurcations with the 75 

focus on how tides contribute to the asymmetrical development. For this purpose, an idealized bifurcating channel was set-up 

in Delft3D. We simulated the morphological evolution of a system consisting of two downstream channels (branches) forced 

by tides and an upstream channel forced by river discharge. We consider this system as a building block of each delta system.  

We studied two cases, i.e. asymmetric geometry of downstream channels, and asymmetric tides between the downstream 

channels. In the former case, the asymmetric downstream geometry was initially prescribed to see how tides affect the 80 

asymmetrical development of the downstream channels. The relative effect of tides was investigated by imposing equal tides 

at downstream boundary of each downstream branch and by using different values for the river discharge in a series of 

simulations. In the latter case, we imposed unequal tidal forcing at the two downstream boundaries that had a symmetric 

geometry. In tide-influenced deltas, the asymmetric tides between downstream channels can occur because the downstream 

channels are connected to other channels with different complexity, which may dissipate the tidal range or slow down the tides 85 

unequally before the tides propagate into the downstream channels of the bifurcation.  

 

This paper is organized as follows. The model setup and methodology are described in Section 2. In Section 3, the results of 

the simulated morphological development are presented. Section 4 presents a discussion on the findings. Finally, the 

conclusions of this study are provided in Section 5. 90 

2 Methodology 

2.1 Model set-up 

An idealized bifurcating channel was set up and its morphological development was simulated using the depth-averaged 

version (2DH) of Delft3D. This 2D approach is suitable for long-term and large scale morphodynamic modelling because it is 

computationally lighter than a 3D approach. Even though a 3D approach allows for vertical flow patterns (Lane et al, 1999) 95 
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such as curvature induced flow, which might be important for the sediment transport process (Daniel et al., 1999), the 2D 

approach also results in reliable morphodynamic simulations (Lesser et al., 2004). Furthermore, the reason to prefer the 2D 

above the 1D approach is to explicitly simulate cross-channel flow induced by tidal propagation from one branch to another 

at the junction as observed in Buschman et al. (2010) and Buschman et al. (2013) and as being identified by Bolla Pittaluga et 

al. (2003) as an important process for sediment division at the junction.  100 

 

The model solved the 2DH unsteady shallow water equations. For bed friction the Chézy formulation was used with a value 

of 60 m1/2s-1, while the horizontal eddy viscosity was set to 10 m2s-1. Bedload and suspended load sediment transport were 

calculated by the van Rijn (1993) method. We used medium sand with a single grain size of 0.25 mm with a dry bed density 

of 1600 kg m-3. Transverse bed slope effects for bedload transport were accounted for by the approach of Ikeda (1982) and we 105 

used a value of 10 for αbn. For streamwise bed slope effects the Bagnold (1966) approach was used with a value of αbs =1. For 

morphology the MorFac approach was used (Lesser et al., 2004; Roelvink, 2006) with an acceleration factor of 400. We tested 

several values between 1 and 1000, and chose the largest value for which morphology had similar development as for value 

of 1 and numerical stability was satisfied. This allows for long-term morphodynamic simulation at time scales of decades 

(Lesser et al., 2004) and centuries (van der Wegen et al., 2008) in much shorter duration. Furthermore, in this study, non-110 

erodible channel banks were used. This limitation was acceptable since changes in width-depth ratio could still be 

accommodated by the bed level change, and using erodible banks is not realistic as long as the model is not able to allow for 

channel bank growth. 

 

The spatial domain consisted of an upstream channel that bifurcates in two downstream channels. The two downstream 115 

channels had a default length of 30 km, although in one series of simulations the length of one channel was 15 km. The 

upstream channel had a length of 220 km to ensure that upstream propagating tides decay smoothly. The downstream channels 

and the first 20 km of the upstream channel had a convergent width profile, while the upstream 200 km had a constant width.  

The channel width was configured by: 

𝑊𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚(𝑥) =  {
𝑊0𝑒−𝑥 𝐿𝑤⁄ ,   𝑓𝑜𝑟 𝑥 < 20 𝑘𝑚
 322 𝑚,        𝑓𝑜𝑟 𝑥 > 20 𝑘𝑚 

, 120 

𝑊𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚(𝑥) = 0.5𝑊0𝑒−𝑥 𝐿𝑤⁄ ,          (1) 

in which W(x) is the channel width, x the longitudinal distance from the junction (i.e. positive in upstream direction, x=0 is at 

bifurcation, hence negative x in downstream channels), W0 is the width at the junction and Lw=50 km is the e-folding length 

scale. Further, in a region within 800 m near the junction an additional widening was applied (panel b in Figure 1) to overcome 

the loss of two grid cells (see grid description and Kleinhans et al. (2008)). This widening is a typical feature of bifurcations 125 

found in delta systems (Kleinhans et al., 2008). After the additional widening, W0 becomes 750 m. 
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The spatial domain of the model was discretized in a curvilinear grid and followed the same method as in Kleinhans et al. 

(2008) and Buschman et al. (2010). At the bifurcation two grid cells had to be removed in the middle of the channel for 

numerical reasons ( Kleinhans et al., 2008), as illustrated in Figure 1. The grid cell length in along channel direction was 80 130 

m. The upstream channel had 12 grid cells across the channel whereas in both downstream channels 5 grid cells were used. 

Therefore, the grid cell size in across channel direction was spatially varying in order to adapt the funnelling shape of the 

channel. Near the junction this resulted in typical grid cell width of 40 m. Based on grid size and channel depth a time step of 

6 seconds was used in all simulations to have Courant Number smaller than 1. The domain had three open boundaries where 

boundary conditions for flow and sediment transport were prescribed. At the upstream end of the upstream channel river 135 

discharge was prescribed and equilibrium conditions for sediment transport at inflow. At the ends of the two downstream 

channels M2 tidal water levels were imposed and equilibrium sediment transport rates at inflow. 

 

Because the formation of alternating bars will affect flow and sediment division at the junction, the channel depth and upstream 

prescribed river discharge were chosen such that the system was in the overdamped bar regime (Struiksma et al., 1985). To 140 

this end, we conservatively followed the empirical classification proposed by Kleinhans and van den Berg (2011) . Therefore, 

the three connected channels had an initial depth of 15 m and a constant along-channel bed slope of 3x10-5. The prescribed 

discharge was ranged between 500 and 2800 m3s-1. 

2.2 Description of model scenarios and boundary conditions 

Depth, width and length of the downstream channels of bifurcations in deltas can be unequal. Hence, in Case 1 we started the 145 

simulations with an unequal geometry, either being a difference in depth or length between the two downstream channels. We 

simulated the morphological evolution of the bifurcation until it approximately reached morphodynamic equilibrium 

(discussed later on). Note that length of the branches was fixed in time, while an initial depth difference not necessarily results 

in an asymmetric equilibrium depth because it can adapt. All simulations belonging to Case 1 were forced by equal tides from 

downstream and river discharge from upstream (settings summarized in Table 1). The depth difference scenarios were 150 

performed in two different ways. First, simulations were started from a system in which the upstream channel and one 

downstream channel were 15 m deep, while the other branch was 7.5 m deep (called Depth1). The upstream 2 km of the 

shallow downstream channel was gradually changed over 2 km to avoid a sudden depth change near the bifurcation. In a 

second type of simulation, we started with uniform bathymetry of 15 m depth and simulated till morphodynamic equilibrium 

was reached (called Depth2). Next, one downstream channel was made 0.5 m deeper and the other 0.5 m shallower. We studied 155 

the sensitivity of the results to the relative magnitude of tides over river discharge by changing the prescribed upstream 

discharge. The simulation with largest river discharge (2800 m3s-1) represents a river dominated system while the simulations 

with lower river discharge (500 m3s-1) represent the more tide-influenced systems.  
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In Case 2 the effect of unequal tidal forcing on morphological development was studied. In natural systems tides in the two 160 

downstream branches can be unequally forced. For example, when the two branches end in a shelf sea, amplitude and phase 

in the two channels can be different because they have a different position with respect to the amphidromic system in the shelf 

sea.  Furthermore, in deltas with multiple bifurcations and unequal depths and channel lengths, tidal amplitude and phase 

differences will be present in the channels because propagation speeds and times in the channels are different.  Hence, in Case 

2 we started simulations with a symmetric geometry but with asymmetric tidal forcing, either being a tidal water level  165 

amplitude difference or a tidal phase difference. The corresponding settings of the simulations can be found in Table 1. The 

difference in downstream tidal forcing between the two channels was studied for values between zero and 0.75 m (ƞ1 in Figure 

1 was 0.75, 0.5 or 0.25 m while ƞ2 was 1 m), while for another set of simulation the tides had equal amplitude but the phase 

difference was 10, 22.5, or 35 degrees (for M2 tide this means one channel had delayed tides of 20, 46 or 72 minutes). 

 170 

We also performed two control simulations (with symmetric geometry and equal tides) to study the equilibrium bed profiles 

in absence of any initial asymmetry. The morphology change simulated for Case 1 and Case 2 were caused by the asymmetric 

forcing/geometry and by the adaptation to the initial conditions. Therefore, the results of the control simulations can be used 

to better interpret the simulations of Case 1 and Case 2.  

2.3 Methods to evaluate model simulations 175 

The morphological development of the bifurcation was observed by evaluating for each downstream channel the tidally and 

spatially averaged depth of the first 2km from the bifurcation (Figure 2, called h1 and h2 from hereon). This region was chosen 

because it determined the morphological development of the entire downstream channel. To determine whether the system 

was in morphodynamic equilibrium we analysed the evolution in time of h1 and h2.  We stopped the simulation when the 

changes in h1 and h2 were small. A true morphodynamic equilibrium, in the sense that no bed level change occurred in the 180 

entire domain, was never achieved. This is very common for morphodynamic simulations of estuaries (Van Der Wegen and 

Roelvink, 2008; Nnafie et al., 2018). Typical duration of simulations was between 1200 and 2400 years, depending on the 

prescribed river discharge.   

 

To compare the depth of the two downstream channels, the depth asymmetry parameter Ψh was calculated as:  185 

Ψh =
|ℎ2−ℎ1|

h1+h2
 .            (2) 

A larger Ψh indicates a more asymmetric morphology. When Ψh is close to one this indicates an avulsion while a zero value 

indicates equal depth of the downstream channels. 

The sediment mobility was evaluated by calculating the width-averaged value of the Shields number two grid cells away from 

the bifurcation, as illustrated in Figure 2. The Shields number at each grid point was calculated as: 190 
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𝜏∗ =
𝜏𝑏

(𝜌𝑠−𝜌𝑤)𝑔𝐷50
 ,           (3) 

where τb is the bed shear stress magnitude,  𝜌𝑠 − 𝜌𝑤=1650 kg m3 and g is gravitational acceleration (9.81 m2s-1). In tide-

influenced systems, tides cause a temporal change of bed shear stress and we calculated both the peak and the tide-averaged 

value of the Shields number. A Shields asymmetry parameter Ψτ* was defined and calculated by: 

Ψτ∗ =
|∆𝜏∗;1,2̅̅ ̅̅ ̅̅ ̅|

τ∗,1̅̅ ̅̅ ̅+τ∗,2̅̅ ̅̅ ̅
 ,            (4) 195 

where  𝜏∗,1̅̅ ̅̅   and 𝜏∗,2̅̅ ̅̅  are the width-averaged Shields number in each downstream channel and Δ𝜏∗;1,2̅̅ ̅̅ ̅̅  is the difference between 

both. A higher value of Ψτ* indicates a more asymmetric sediment mobility condition while Ψτ=0 indicates a symmetric 

sediment mobility. When Ψτ* was based on peak bed shear stresses it is denoted by Ψτ*max while Ψ<τ*> is used when it is based 

on tidally averaged bed shear stresses. 

At the grid locations where we determined the Shields number, we also determined the tidally averaged (U0) and the M2 tidal 200 

(UM2) flow magnitudes, in a similar way as for the Shields number. Furthermore, we calculated the width-integrated and tidally 

averaged bedload and suspended load transport at the cross-sections shown in Figure 2.  

3 Results 

3.1 Evolution of control runs 

Results of the two control simulations show that bed levels were initially not in morphodynamic equilibrium. The time-stack 205 

diagram of width-averaged depth as a function of space is shown in Figure 3. The morphology changed over time until an 

approximate equilibrium was reached, which took about 1200 years. There are two time-scales involved. First, there are 

deposition fronts from the upstream channel that migrate downstream. Second, there is a slower adaptation to the equilibrium 

condition. The results also show that true morphodynamic equilibrium, in the sense that bed levels are steady, was not achieved 

after 1200 years. However, bed level changes were small at the end of the simulation. The lowest discharge resulted in the 210 

smallest depth for the upstream channel, but the depth of the two downstream channels does not depend on the discharge. 

Typical depths are around 8 - 10 m for the downstream channels, and 10 – 12 m for the upstream one. 

3.2 Geometry difference case 

When simulations started with unequal channel depth, a similar evolution as the control simulations occurred. The 

morphological evolution was characterized by three typical time scales. First, there was erosion near the bifurcation, mainly 215 

because of the decrease in the cross-sectional area directly seaward of the bifurcation. Second, this erosion was followed by 

deposition fronts that migrated downstream during the simulation. This deposition front can be identified by a rapid decrease 

of the depth in the downstream channels at the beginning or halfway the simulation (Figure 4). It is similar to the evolution of 

Control_Q2800 and Control_Q1596, but this depositional front was not necessarily similar in the two downstream channels 
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because of the imposed differences in the initial bed level. Furthermore, in the lowest discharge simulations (Q=500 m3s-1) it 220 

takes much longer for the deposition front to reach downstream boundary and therefore it takes much longer before the system 

is in the steady state. Third, after the initial adaptation phase, the morphology of the channels started to change gradually. 

Some simulations took 2400 years (Q=500 m3s-1) until the morphological changes near the junction were small. Furthermore, 

the results show that at the end of the simulation the depth of the shallow branch depends on the discharge (Figure 4). The 

higher the discharge, the shallower the branch is. For the deepest branch it is the other way around. The deepest branch is 225 

shallowest for the lowest discharge.  

 

The simulations that were based on perturbed equilibrium depth (Depth2) had a different morphological evolution and final 

equilibrium than the ones that started with 7.5 m depth difference (results not shown). The Depth2 simulation did not show 

the fast, initial depth response, but was mainly characterized by a slow adaptation to a new equilibrium because the system 230 

was still close to equilibrium at the start of the simulation. It took relatively long to achieve the new equilibrium and total 

simulation time was 2400 years in this case. Interestingly, although the external forcing for the Depth1 and Depth2 simulation 

were the same, the final equilibria were different. Because the depth in the channels influences the tidal dynamics (by for 

example friction), the tide-induced flows were different at the junction and stayed different during the entire simulation. Hence, 

the equilibrium not only depends on external forcing but also on initial conditions. The initial and final morphology near the 235 

bifurcation for all Depth1 and Depth2 simulations can be seen in Appendix A. 

 

The simulations with Length difference show that the shortest branch developed to be the deepest, while the longest became 

very shallow (Figure 5). The longest branch becomes so shallow that it becomes morphologically inactive. This occurred for 

both the highest and for the medium discharge scenario and is also independent of the initial conditions (starting with 240 

equilibrium bathymetry and shortened channel, or with 15 m deep channels). Meanwhile, the shortest channel was deepest for 

the highest discharge condition. The final morphology near the bifurcation for the simulations in Length difference scenario is 

provided in Appendix A. 

3.3 Tide difference case 

Asymmetric forcing of tides resulted in asymmetric morphological evolution. Because the system started out of equilibrium, 245 

the morphological evolution is again characterized by a quick adaptation followed by a slow evolution to the equilibrium. 

When forced by different tidal amplitude, the downstream branch with the smallest downstream tidal forcing evolved into the 

shallowest branch (Figure 6). Interestingly, when tidal amplitude in Branch 1 was decreased from 0.75m to 0.5m or even 

0.25m the bifurcation evolved into a less asymmetric system. Furthermore, when the two downstream channels were forced 

by equal amplitudes, but with different phase, this also resulted in the development of an asymmetric morphology of the 250 

bifurcation (Figure 7). In general, the channel with delayed tides developed smallest channel depth while the channel with 

earlier tides developed deeper channels. Interestingly, the deposition front in the shallowest branch became stagnant for the 
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largest imposed phase differences, suggesting that the flow magnitude was below the threshold for erosion (static equilibrium). 

However, the depth around the bifurcation did not become zero and still evolved. The larger the difference in tidal phase at the 

two downstream boundaries the shallower the delayed branch became, while the other branch was deeper. The final 255 

morphology near the bifurcation for all simulations of this case is provided in Appendix A. 

4 Discussion 

4.1 Relation between tides and the morphological evolution of bifurcations 

The results suggest that tides cause less asymmetric bifurcations. To quantify how tides affect the morphology, the results from 

all scenarios were correlated. Figure 8 shows a scatter plot and linear fit between the final Ψh (dimensionless depth asymmetry) 260 

and Ψτ* (dimensionless Shields asymmetry) for all model simulations. As can be seen, Ψh is linearly correlated with Ψ<τ*> and 

Ψτ*max. Hence, the degree of asymmetry in the morphology is directly related to the degree of asymmetry in the sediment 

transport capacity. From comparison of Ψ<τ*> and Ψτ*max against Ψh, Ψτ*max shows the strongest relation and therefore the 

maximum mobility, which occurred during the peak ebb flow in our simulations, is the most representative to determine the 

morphological asymmetry of the downstream channels.  265 

 

According to Eq. (3), in a system with uniform sediment properties and water density, the sediment mobility in the downstream 

channels only depends on the total bed shear stress τb. Because in the downstream channels the flows are mainly in along-

channel direction, the total bed shear stress τb magnitude can be expressed by 𝜏𝑏 =
𝜌𝑔𝑢2

𝐶2 , in which C is the Chézy coefficient 

and u is instantaneous along-channel flow velocity. Based on a harmonic analysis, it became clear that the mean flow (U0) and 270 

M2 component (UM2) were the main tidal constituents and higher harmonics like M4 were relatively small. Therefore, the 

maximum sediment mobility scales very well with the square of summation of UM2 and U0 (τ*max ~ (UM2 + U0)2).   

 

The relatively strong river discharge in the simulations performed causes the ratios of U0 and UM2 in the upstream channel 

cross section near the junction to be in the range between 0.2 and values slightly larger than 1 (see Figure a in Appendix A). 275 

This similar importance between those components indicates that our model is a mixed river- tide-influenced system. For most 

simulations, U0, dominated by the river flow, in the two downstream branches was more asymmetric than UM2 (see Figure b 

Appendix A). In river-dominated systems, bifurcations with higher flow division asymmetry will also develop a more 

asymmetric morphology (Kleinhans et al., 2008). Interestingly, the tidal flows oppose the asymmetry induced by U0. UM2 

becomes less asymmetric with the increase of tidal influence, shown by the decreasing trend in ΨUM2 for increasing sum of 280 

UM2 (∑UM2) in the two downstream channels (Figure 9a), in which the summed UM2 was measured from the width-averaged 

UM2 at cross section in the downstream channels shown in Figure 2. This explains why the increased tidal influence, indicated 

by larger sum of UM2 in Figure 9a and Figure 9b, causes less asymmetric bifurcations. Due to tides, the sediment mobility in 
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both channels is closer to each other than without tides (Figure 9b). A more tide influenced condition is not only achieved by 

decreasing river discharge, but also by inducing an asymmetry in the tidal forcing in the downstream channels. For either 285 

increased difference in amplitude or phase, the sum of UM2 in both downstream channels also increased and became similar in 

magnitude.  

 

There are two reasons that drive a less asymmetric tidal flow in the more tide influenced condition. First, the propagation of 

tides from the dominant downstream channel to the other downstream channel balances the tidal flow in the two downstream 290 

channels. This process mainly rules in tide difference case. Tidal forcing asymmetry between downstream channels drives 

tidal propagation from one downstream channel to the other and results in phase lags of tidal flow inducing strong cross-

channel flow at the junction (similarly as discussed in Buschman et al. (2013)). This can be seen by a larger cross-channel 

flow in the upstream channel near the bifurcations for larger asymmetry between the prescribed tides in Figure 10. This cross-

channel flow is dominated by the tides (VM2) while its mean flow value (V0) was close to zero. Strong cross-channel flows 295 

caused erosion at the bifurcation, resulting in a trench-like scour connecting the downstream channels. This scour can be found 

in the amplitude phase difference scenario and the most pronounced in the simulation Amp_0.25 (see Figure A2c-f in Appendix 

A). Although a bar developed in the upstream channel on the side of the downstream channel imposed with lower tidal 

amplitude, the cross-channel flows deepened the bed at bifurcation and maintained the connection between both downstream 

channels and the upstream channel. The development of the trench-like scour at the bifurcations is also observed in the Berau 300 

River Delta (Buschman et al., 2013) and Mahakam Delta (Sassi et al., 2011).  This deepening at the bifurcation can be also 

affected by the angle of the bifurcation, something we did not study here. Second, with equal tides imposed in the two 

downstream channels for depth and length difference scenario, the larger river discharge in the dominant downstream channel 

dampens the tides in this channel while the shallowing bed level in the other downstream channel increase the tidal flow in 

this channel. As a result, this combining effect induces a less asymmetric tidal flow in the downstream channels.  305 

4.2 Role of bedload versus suspended load   

In the theory of Bolla Pittaluga et al. (2003) and Bolla Pittaluga et al. (2015) the lateral bed slope causes additional sediment 

transport into the dominant channel, thereby having a stabilizing effect on the bifurcation. Here, we used the van Rijn (1993) 

sediment transport formulations in which bed slope only affects the bedload transport and not the suspended load transport. 

Based on this, we expected that bedload transport will be divided less asymmetrically than suspended load transport. To check 310 

this hypothesis, the tidally averaged and width-integrated sediment transport at the cross-sections, shown in Figure 2, were 

calculated. We calculated an asymmetry index similar as we did for the Shields number and depth. The results of the scatter 

plot of suspended load asymmetry versus bedload asymmetry index clearly show that suspended load tends to be divided more 

asymmetric at the bifurcation (Figure 11a). Only when the system is fully symmetric or asymmetric there is no difference in 

asymmetry of bedload and suspended load transport. Note that this asymmetry trend could be different for different sediment 315 

grain size. A finer sediment defined would result in a large sediment mobility which weaken the effect of lateral bed slope to 
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oppose the asymmetric division of bedload transport. Thus the asymmetry of bedload and suspended load would tend to be 

more similar. Furthermore, from a scatter plot of depth asymmetry (ψh) versus the ratio of bedload transport over suspended 

load transport in the upstream channel, it becomes clear that systems that have more asymmetric bed levels have a smaller 

contribution of bedload transport to the total transport, and vice versa (Figure 11b). However, there is also some considerable 320 

scatter. Lastly, a scatter plot of the ratio of mean flow and M2 flow magnitude versus ratio of bedload and suspended load 

transport in the upstream channel (Figure 11c) suggest that when river flow is relatively important, the system is suspended 

load dominated, while for more tide-dominated conditions bedload plays a more important role. This further explains why the 

more tide-dominated conditions result in less asymmetric morphology.   

4.4 Implications of results 325 

From the finding presented in this paper, we can speculate how tides will influence the morphological evolution of deltas. In 

the seaward part of tide-influenced deltas, river flow tends to be small and tidal flows relatively large. In these regions we only 

expect asymmetry in morphology when the branches are unequally forced by tides. The tides tend to keep all the branches 

open and have similar depths. In the upstream part of deltas, river flows tend to be larger which can result in large 

morphological asymmetries. However, the different possible pathways of the tide along the channel networks can generate 330 

tidal amplitude or phase difference between branches, inducing relatively strong tidal currents. This prevents the closure of 

one downstream channel and erodes the bed at the junction because of the strong cross-channel flows.  

 

Morphological development of bifurcations occurs on a long time scale and several effects have been neglected. For example, 

we did not include effects of sea level rise (Jerolmack, 2009; Van Der Wegen, 2013), changes in upstream discharge or 335 

sediment supply (Syvitski and Milliman, 2007), channel bank erosion or growth (Miori et al., 2006) nor did we account for 

delta front development that could change the length of a branch (Salter et al., 2017). However, we have provided a basic 

explanation on how tides can stabilize the morphology of deltas. There are many more processes that can affect the 

morphological evolution and these need to be studied as well.  

5 Conclusions 340 

In this manuscript, the effect of tides on the morphological development of bifurcations was investigated using a numerical 

modelling approach in Delft3D. An idealized bifurcation was built by splitting an upstream channel into two downstream 

branches. The idealized bifurcations were forced by river discharge from upstream and tides from downstream. To identify the 

effect of tides, two cases were studied, namely geometry difference (length and depth of channels) and tide difference 

(difference in prescribed tides at the two downstream channels).  345 
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The results show that increased tidal influence compared to river influence, results in a less asymmetric morphology of the 

bifurcation. This increased tidal influence can either be achieved by smaller river discharge or by asymmetric tides from 

downstream. The main mechanism is that tidal flows tend to be less asymmetric in the two downstream channels than tidally 

averaged flows. This causes the peak Shields number in the branches to be closer to each other with increasing influence of 350 

tides. Furthermore, we have shown that bedload transport tends to be divided less asymmetrical than suspended load, 

suggesting the influence of lateral bed slopes on stabilizing the morphological evolution of the system. In our simulations, 

bifurcations with increased tidal influence had a relatively ratio of bedload over suspended load transport and therefore 

developed a less asymmetric morphology. Our results can explain why tides tend to stabilize the bifurcations in deltas.  
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Table 1: Summary of simulations undertaken in the present study and their boundary conditions (river discharge and tidal 
properties), and geometry differences between the downstream channels. 

Scenario Simulation name Q (m3s-1) 
ƞM2 (m) 

 

ΔθM2 (
o) 

 

ΔL (km) 

 

Δh  (m) 

Branch 1 Branch 2    

Control 

simulation 

Control_Q2800 2800 1 1 0 0 0 

Control_Q1596 1596 1 1 0 0 0 

Depth 

difference 

Depth1_Q2800 2800 1 1 0 0 7.5 

Depth1_Q1596 1596 1 1 0 0 7.5 

Depth1_Q500 500 1 1 0 0 7.5 

Depth2_Q2800 2800 1 1 0 0 1 

Depth2_Q1596 1596 1 1 0 0 1 

Length 

difference 

Length_Q2800 2800 1 1 0 15 0 

Length_Q1596 1596 1 1 0 15 0 

Amplitude 

difference 

Amp_0.75 

2800 

0.75 1 0 0 0 

Amp_0.5 0.5 1 0 0 0 

Amp_0.25 0.25 1 0 0 0 

Phase 

difference 

Phase_10 

2800 

1 1 10 0 0 

Phase_22.5 1 1 22.5 0 0 

Phase_35 1 1 35 0 0 

  450 
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Figure 1: (a) Illustration of bifurcation model setup from the upstream channel forced by river discharge Q, to the downstream 

boundaries which are forced by tidal water levels. Here, h indicates the depth and L indicates the length of each channel. Meanwhile, 

Ƞ and θ indicates amplitude and phase of tidal water levels at each downstream boundary. (b) Zoom of model grid near the junction, 455 
showing the additional widening near the junction and the disappearance of two grid cells downstream of the junction.  

 

 

Figure 2: The grids in surrounding of the bifurcation overlaid by the areas where the bed level changes were evaluated (grey boxes), 
the grids where the asymmetry indices (red lines) and upstream channel flow (black line) were calculated.  460 
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Figure 3: Time-stack diagram of width- and tide-averaged depth (colour) of the upstream channel (left panels; km 0 is junction, km 

20 upstream) and downstream channels (middle and right panels; km 0 is junction, km 30 near sea) as a function of distance from 

the bifurcation (vertical axis) for the two control simulations. The top panels ((a), (b), and (c)) are the result from the high discharge 465 
simulation (Control_Q2800) while the bottom panels ((d), (e), and (f)) are for the low discharge simulation (Control_Q1596).  

 

 

Figure 4: Same plot as Figure 3 but for simulations of Depth1. The panels from top to bottom show the results from different 

simulation (Depth1_Q2800, Depth1_Q1596, Depth1_Q500, respectively) while from left to right show the upstream channel, shallow 470 
branch, and deep branch, respectively. Different scale of colour bar for different channel is applied. 
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Figure 5: Time-stack diagram of width- and tide-averaged depth as a function of space for the simulations in Length difference 
scenario with the same order as Figure 4 but with short (panel (b) and (e)) and long (panel (c) and (f)) downstream branch. 475 

 

 

Figure 6: Time-stack diagram of width- and tide-averaged depth as a function of space for the Amplitude difference scenario. 
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 480 

Figure 7: Time-stack diagram of width- and tide-averaged depth as a function of space for Phase difference scenario. 

 

 

Figure 8: Relation between depth asymmetry number Ψh and: (a) the asymmetry in tidally averaged Shields number (Ψ<τ*>), and (b) 

the asymmetry in peak Shields number (Ψτ*max) at the equilibrium condition for all simulations from scenarios described in Table 1. 485 
Note that in panel a, two simulations of Phase difference scenario and a simulation of Depth1 scenario is slightly overlapping. 
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Figure 9. Comparison between: (a) tidal flow asymmetry and (b) Peak Shields number asymmetry in the two downstream branches 
against the total tidal flow magnitude from the two downstream channels. 490 

 

 

Figure 10: Cross channel flow of: (a) tidal current amplitude and (b) mean current at bifurcation in the upstream channel for all 
simulations.   

 495 
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Figure 11. Comparison of: (a) Suspended load asymmetry (Ψsusp load) against bedload asymmetry (Ψbedload) overlaid by the line of 

equality (black line), (b) Scatter plot of morphology asymmetry (Ψh) against ratio of bedload and suspended load transport in the 

upstream channel, and (c) Scatter plot ratio of bedload and suspended load transport in the upstream channel against the dominance 
of river flow over tidal flows in the upstream channels. The legend for all panels is provided in panel c. 500 
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Appendix A 

 

Figure A1: Initial (left panels) and final (right panels) depth near the bifurcation for all simulations in Case 1. For Depth difference 505 
scenario (panel a-j), the top branch in each panel is the deep downstream branch and the bottom one is the shallow downstream 

branch. For Length difference scenario (panel k-n) the top branch in each panel is the long downstream branch and the bottom 

branch is the short downstream branch. 
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 510 

Figure A2: Final depth for Case 2. For amplitude difference scenario (panel a-c) the downstream branch imposed by low tides is the 

bottom branch while for phase difference scenario (panel d-f) the bottom branch is the downstream branch imposed by delayed 
tides.  

 

 515 

Figure A3: (a) Ratio of U0 and UM2 for all simulations and (b) Comparison of asymmetry of UM2 against asymmetry of U0. 

 

 

 

 520 
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